If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3r^2+8r-16=0
a = 3; b = 8; c = -16;
Δ = b2-4ac
Δ = 82-4·3·(-16)
Δ = 256
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$r_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$r_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{256}=16$$r_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(8)-16}{2*3}=\frac{-24}{6} =-4 $$r_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(8)+16}{2*3}=\frac{8}{6} =1+1/3 $
| 1/w-1-1/2w-2=1/2w-2 | | 80+a=95 | | 142=62+u | | 124=s+39 | | 10=2(c+4) | | 9a-1=-28 | | 3=20y÷10² | | (i+1)+(i+2)+i=228 | | 3=20y/10² | | 6x^2=-6x+120 | | (x-20)3=15 | | 52=q+19 | | 7(p-3)=14 | | -1-6x=-13 | | 36=3(2+x) | | 6x^2=-6+120 | | -3(2n-5)=0.5(-12n+30 | | 4/x+2=x-2/15 | | 6×(x+2)=3×(16+3x) | | 3x+6=3(x=2) | | x/1=x+1/1.5 | | 26=4+r | | Y+15=-6x | | 2x^2-7x+-4=0 | | (12x-4)=(13x-9) | | /5(25−5a)=4−a | | 612=9^x | | 40=-1/3(3x-9)+2 | | b=0.15(140000-b) | | -36=6(x+5) | | (12x-4)=13x-9) | | 4x-50=20 |